令和 4 年度 入学者選抜学力検査問題

数 学 (理系β) 数学 I, 数学 A 数学 I, 数学 B 数学 II, 数学 B 数学 II, 数学 B 数学 II, 数学 B

注 意 事 項

- 1. 試験開始の合図があるまで、問題冊子及び解答用紙の中を見てはいけません。
- 2. 問題は全部で4題あります。また、解答用紙は4枚あります。
- 3. 試験中に問題冊子の印刷不鮮明,ページの落丁・乱丁及び解答用紙の枚数の過不足や 汚れ等に気がついた場合は、手を挙げて監督者に知らせてください。
- 4. 試験開始後,すべての解答用紙に受験番号,志望学部及び氏名を記入してください。 受験番号の記入欄は各解答用紙に2箇所あります。
- 5. 解答は各問, 指定された番号の解答用紙のおもて面にだけ記入してください。
- 6. 裏面その他に解答を記入した場合、その部分は採点の対象となりません。
- 7. 各問題の配点 50 点は 200 点満点としたときのものです。
- 8. 試験終了後、問題冊子は持ち帰ってください。

- 〔**1**〕 (配点 50) 曲線 $y = f(x) = \log(x^2 + 1)$ ($x \ge 0$) を C とし、 C 上の点 P(1, f(1)) における接線を l とする。ただし、対数は自然対数とする。
 - (1) Cの変曲点を求め、Cとlの共有点はPのみであることを示しなさい。
 - (2) $C \ge l$ および y 軸で囲まれた部分の面積を求めなさい。

- 〔2〕 (配点 50) 平面上の 3 点 A, B, C を頂点とする三角形を T とし、T の重心を G とする。G に関して、3 点 A, B, C と対称な点をそれぞれ A', B', C' とし、A', B', C' を頂点とする三角形を T' とする。 $\overrightarrow{GA} = \overrightarrow{a}$, $\overrightarrow{GB} = \overrightarrow{b}$, $\overrightarrow{GC} = \overrightarrow{c}$ とおくとき、次の問いに答えなさい。
 - (1) Tの辺 BC と T' の辺 B' C' は平行であることを示しなさい。
 - (2) $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ であることを示しなさい。
 - (3) T' の辺 B' C' は T の辺 AB および AC と交わることを示しなさい。

- 【**3**】 (配点 50) xy 平面上の原点を O とし、2 点 $P_1(1, 0)$ 、 $Q_1(1, \sqrt{3})$ をとる。自然数 n に対して、x 座標が OP_n の長さを $\frac{3}{2}$ 倍して $\left(\frac{1}{2}\right)^n$ を加えた値となる x 軸上の点を P_{n+1} とおく。 P_n を通り直線 OQ_1 と平行な直線と、 P_{n+1} を通り x 軸に垂直な直線との交点を Q_{n+1} とする。 $\triangle Q_{n+1}P_nP_{n+1}$ を T_n とおく。次の問いに答えなさい。
 - (1) P_2 および P_4 の x 座標の値を求めなさい。
 - (2) P_n の x 座標の値を α_n とするとき、 α_n を n を用いて表しなさい。
 - (3) $\angle P_1OQ_1$ の二等分線を l とする。 自然数 n に対して, T_n の辺 P_nQ_{n+1} と l の交点の座標を求めなさい。
 - (4) 自然数 n に対して、 T_n から l によって切り取られる三角形の面積を s_n としたとき、無限級数 $\sum\limits_{n=1}^\infty s_n$ の和を求めなさい。

〔4〕 (配点 50) 整数全体を定義域とし、整数を値にとる関数 f(n) が、次の条件 1、2 を満たしているとする。

条件 1 f(0) = 0

条件 2 任意の整数 n に対し、f(3+n)=f(3-n) かつ f(7+n)=f(7-n) が成り立つ

整数全体を定義域とする関数 g(n), h(n) をそれぞれ, g(n)=6-n, h(n)=14-n とするとき, 次の問いに答えなさい。

- (1) 合成関数 $(h \circ g)(n)$ と $(g \circ h)(n)$ を求めなさい。
- (2) 任意の整数 n に対し、2つの等式 $(f \circ g)(n) = f(n)$ と $(f \circ h)(n) = f(n)$ が成り立つことを示しなさい。
- (3) f(2022) = 0 であることを示しなさい。
- (4) 集合 A を、関数 f(n) のとりうる値全体の集合、すなわち、 $A = \{f(n) | n$ は整数 $\}$ とする。 このとき、集合 A の要素の個数は 5 以下であることを示しなさい。