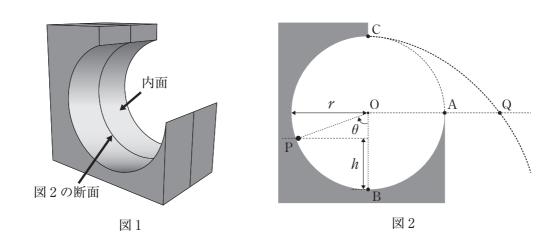
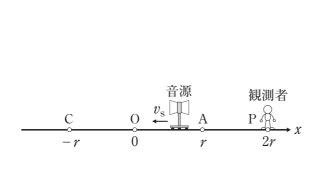
前期日程


2020年度入学試験問題

物理

注 意 事 項

- 1. この問題冊子は、試験開始の合図があるまで開いてはいけません。
- 2. 解答用紙は問題冊子とは別になっています。解答はすべての解答用紙の指定されたところに 記入しなさい。それ以外の場所に記入された解答は、採点の対象となりません。解答用紙は4 枚あります。
- 3. 本学の受験番号をすべての解答用紙の指定されたところへ正しく記入しなさい。氏名を書いてはいけません。
- 4. この問題冊子は、表紙を含めて16ページあります。問題は4ページから11ページにあります。ページの落丁・乱丁及び解答用紙の汚れ等に気付いた場合は、監督者に申し出なさい。
- 5. 問題冊子の余白等は適宜利用しても構いませんが、どのページも切り離してはいけません。
- 6. この問題冊子は持ち帰りなさい。


1 図1に示す動かない物体のなめらかな内面を考える。図2は図1の物体の鉛直断面図である。内面の鉛直断面は原点 O を中心とする半径 r [m]の円の一部で,点 A,B,C はその円周上にあり,点 A は点 O と同じ高さ,点 B は最下点,点 C は最高点である。CA 間は開いている。点 B に質量 m [kg]の小球を置き,円の接線方向に初速度を与える。小球の運動は図2の鉛直断面内で起こるものとする。以下の間いに答えよ。ただし,重力加速度の大きさを g [m/s²]とする。空気抵抗は無視してよい。

- (a) 点 B で図 2 の右向きに速さ v_0 [m/s]を小球に与えたとき、小球は反時計回りに点 B から点 A まで 円周に沿って運動し、点 A から速さ v_A [m/s] で飛び出した。
 - (i) 点 B において初速を与えられたときと、点 A を通過するときの小球の力学的エネルギー保存則の式を r, m, g, v_0 , v_A のうち必要なものを用いて書け。ただし、点 B の高さを重力による位置エネルギーの基準とする。
 - (ii) v_0 が v_1 [m/s] のとき、点 A から飛び出した小球の最高点が点 C と同じ高さであった。 v_1 を r、m、g のうち必要なものを用いて書け。
- (b) 点 B で図 2 の左向きに速さ v_2 [m/s] を小球に与え、小球が時計回りに円周に沿って運動するときを考える。運動している小球の位置を点 P とし、線分 OP と線分 OB のなす角を θ [rad]で表し、時計回りを正とする。
 - (i) 点 P の点 B からの鉛直方向の高さ h[m] を r, m, g, θ のうち必要なものを用いて書け。
 - (ii) 点 P における小球の速さ v [m/s] を r, m, g, v_2 , θ のうち必要なものを用いて書け。
 - (iii) 点 P において小球が内面から受ける垂直抗力 N [N] e r, m, g, v_2 , θ のうち必要なものを用いて書け。ただし,等速でない円運動をする小球が受ける遠心力は,その瞬間の速さで等速円運動する場合の遠心力と等しいとする。
 - v_2 を徐々に大きくし、その値が v_3 [m/s]になったときに、はじめて点 C に到達した。 v_3 を r、m、g のうち必要なものを用いて書け。

- (c) 点 B で図 2 の左向きに速さ v_2 を与えられた小球は、時計回りに点 B から点 C まで円周に沿って運動し、点 C で円周から離れ空中に飛び出した。小球は点 C から飛び出したあと、OA を通る直線を通過した。その通過点を点 Q とする。
 - (i) OQ 間の距離 $d_0[m]$ を r, m, g, v_2 のうち必要なものを用いて書け。
 - (ii) この d_{Ω} の最小値 $d_{\min}[m]$ を r, m, g のうち必要なものを用いて書け。
- (d) 点 B で図 2 の左向きの速さを小球に与えた場合について、以下の記述の中で正しいものには○ を、誤りには×を記入せよ。ただし、記号は問(a)から問(c)で求めたものとする。
 - (r) 点 B での速さが v_3 より大きい場合、点 B と点 Q を通過する小球の力学的エネルギーが保存される。
 - (イ) 点Bでの速さが v_1 である場合、小球の最高点は点Cと同じ高さになる。
 - (ウ) 点Bでの速さが v_1 である場合、小球の最高点での速さは0になる。
 - (エ) 小球が円周に沿って運動をしているとき,小球が内面から受ける垂直抗力が小球にする仕事は 0 である。
 - (オ) 点 C から小球が飛び出した場合, 小球は内面上に落下することはない。
 - (カ) 点 B での速さが v_3 より小さい場合、小球は必ず内面上に落下する。

$oxed{2}$ 一定の振動数 $f_0[Hz]$ の音を出している音源が、一定の速さ $v_{ m s}[{ m m/s}]$ で、図 1 のように x 軸上の
\overline{AC} 間を直線往復運動している場合と,図 2 のように原点 \overline{O} を中心とした半径 \overline{r} $[m]$ の $x-y$ 平面上の
円周 ABCD 上を反時計回りに等速円運動している場合を考える。観測者のいる点 P は図1,図2ともに
原点 O から x 軸正の方向に $2r[m]$ 離れた場所である。音速を $V[m/s]$ とし、 v_s は V に比べて小さいも
のとする。以下の文中の (\mathcal{T}) から (\mathcal{Y}) を適切な式,または語句で埋めよ。式は f_0 , $v_{ m s}$, r , V
のうち必要な記号を用いて表せ。 (シ) は図3の(あ)~(え)の中から適切なグラフを選び, (セ) ,
(タ) は四角で囲まれた語句のうち適するものを書け。
(a) まず、図 1 の直線往復運動している場合を考える。図 4 のように、音源は $t=0$ [s]に点 A で点 C
に向かって折り返し、 $t=t_0[\mathbf{s}]$ に点 \mathbf{C} で再び点 \mathbf{A} に向かって折り返す。
$t=0$ の瞬間に音源から出た音は、音源が点 C に達する前に点 P にいる観測者に $t=t_a[\mathbf{s}]$ に届い
た。このとき $t_a=$ $($ ア $)$ $[s]$ である。 $t=0$ から $t=t_a$ の間に音源は $($ 4 $)$ $[m]$ 進み, 1 波長
分の音波を 1 個の波と考えると,この間に音源が出す波は (b) 個で, $t=t_a$ における観測者と
音源との間の距離 (エ) [m]に入っている。よって、この音の波長は (オ) [m]となり、観測
者の聞く音の振動数は $($ $($ か $)$ $[Hz]$ となる。一方, $t=t_0$ に音源から出た音が観測者に届く時刻は
$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} e$
源が点 A から点 C までに動いている間に出た音を観測者が聞いている時間である。点 A から点 C ま
で動いている間に音源は (ケ) 個の波を出すので、観測者が聞く音の振動数は (カ) と
なる。同様に、音源が点Сから点Aに向かって動く間に出た音を観測者が聞く時間は
(コ) [s]であり、その音の振動数は (H) [Hz]となる。ここで、音源が動く速さを
$v_{ m s}=rac{V}{5}[{ m m/s}]$ とし,観測者が聞く音の最大振動数を $f_{ m max}[{ m Hz}]$,最小振動数を $f_{ m min}[{ m Hz}]$ とすると,
観測者が聞く音の振動数 $f[Hz]$ の時間変化のグラフは (\mathfrak{d}) となる。
(b) 次に、図 2 の等速円運動している場合を考える。音源の位置を点 Q とし、 $\angle POQ = \theta$ [rad]とす
る。ただし、 θ は反時計回りを正の向きとする。
点Aで音源から出る音を観測者が聞くと、その振動数は (ス) [Hz]となる。その後、点Aか
ら点Cに動く過程で音源が出す音を観測者が聞くと、その振動数は点Aで出る音より
(せ) 大きく, 小さく なる。点 C で音源から出る音を観測者が聞くと, その振動数は (ソ) [Hz]
である。さらに, 点 C から点 A に動く過程で音源から出る音を観測者が聞くと, その振動数は点 A
で音源から出る音より $\boxed{(extit{9})}$ 大きく、小さく $$ なる。観測者が聞く音の振動数は $\theta = $ $\boxed{(extit{f})}$ $$ $$ $$ $$ $$
の瞬間に音源から出るときに最大となり、その振動数は (ツ) [Hz]である。ただし、 (チ)
は $0 \le heta < 2\pi$ で答えよ。

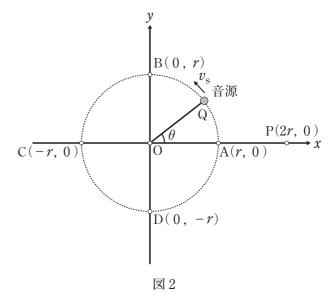
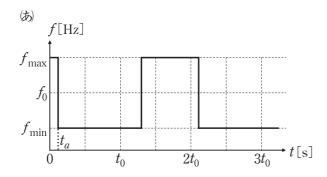
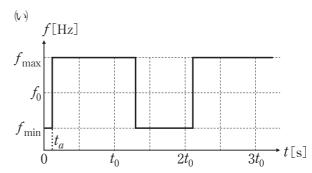
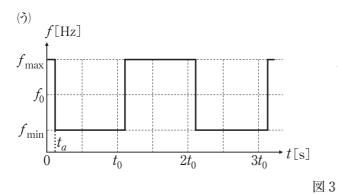
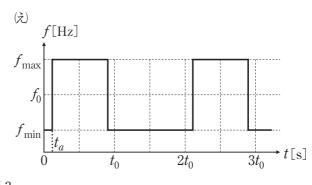
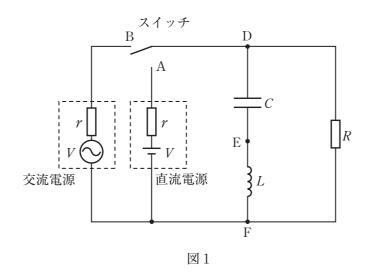
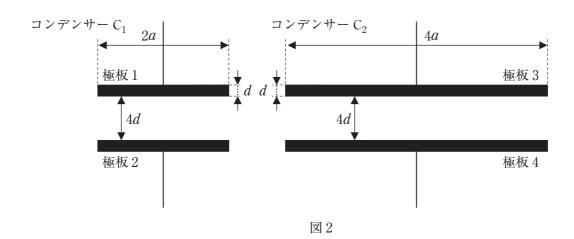
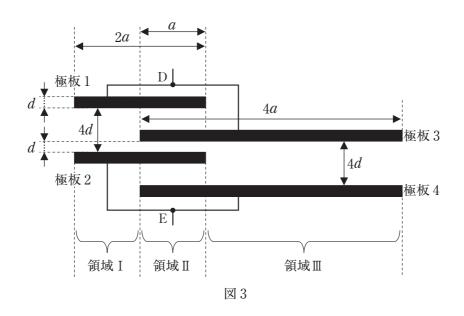






図 1

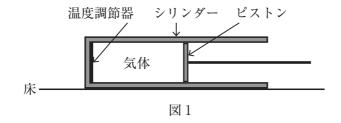





x [m] r A 0 0 t_0 $2t_0$ $3t_0$ t [s] -r C

- **3** 図1の回路は、電気容量 C[F]のコンデンサー C、抵抗値 $R[\Omega]$ の抵抗 R、自己インダクタンス L[H]のコイル L、内部抵抗 $r[\Omega]$ をもつ電圧 V[V]の直流電源、電圧の実効値が V[V]で角周波数 ω [rad/s]の交流電源、およびスイッチで構成されている。交流電源の内部には図の破線中に示されて いるように $r[\Omega]$ の抵抗があるものとする。導線やスイッチの抵抗は無視できる。図中の A、B、D、E、F は回路上の接続点を表している。
- (a) まず、図2のような平行板コンデンサー C_1 、 C_2 を考える。コンデンサー C_1 の極板 1、2 は直方体で、幅 2a [m]、奥行き b [m]、厚さ d [m]である。コンデンサー C_2 の極板 3、4 も 直方体で、幅 4a [m]、奥行き b [m]、厚さ d [m]である。コンデンサー C_1 、 C_2 とも極板間距離は 4d [m]であり、極板間距離は極板の幅と奥行きに比べてじゅうぶん小さい。それぞれの極板間は誘電率 ε [F/m]の空気で満たされている。コンデンサー C_1 、 C_2 の電気容量 C_1 [F]、 C_2 [F] をそれぞれ求めよ。答えは a、b、d、 ε のうち必要な記号を用いて表せ。
- (b) 次に、図3のように、コンデンサー C_1 、 C_2 を動かして幅方向にa[m]重なった状態にし、極板1 と3、極板2と4を接続した。奥行き方向にずれはない。この状態のコンデンサーが図1のコンデンサー C である。
 - (i) D-E 間に直流電圧 $V_C[V]$ が加わっている場合に、図3の領域 I 、II 、II にわけた極板間の電界の強さ E_1 から E_5 を a 、b 、d 、 ϵ 、 V_C のうち必要な記号を用いて表せ。ただし、 E_1 は領域 I の極板 1-2 間の電界、 E_2 は領域 II の極板 1-3 間の電界、 E_3 は領域 II の極板 3-2 間の電界、 E_4 は領域 II の極板 2-4 間の電界、 E_5 は領域 II の極板 3-4 間の電界の強さとする。点 D の電位は点 E の電位より高く、電界は D から E 方向を正とし、各極板の端の周辺部分の影響は無視できる。
 - (ii) コンデンサー C の合成電気容量 C[F] を a, b, d, ϵ のうち必要な記号を用いて表せ。
- (c) 図1のスイッチをA側に接続して直流電圧を加え、じゅうぶん時間が経過した。抵抗Rを流れる電流 $I_R[A]$ とコイルLを流れる電流 $I_L[A]$ 、およびコンデンサーCに加わる電圧 $V_C[V]$ を求めよ。答えはC, R, L, V, r のうち必要な記号を用いて表せ。
- (d) コンデンサーに充電された電荷を完全に放電したのち,スイッチを B 側に接続した。交流電圧の 角周波数 ω [rad/s] を変化させるときの以下の説明文を完成させよ。ただし, (r) から (r) から (r) の解答は C, R, L, V, r, ω のうち必要な記号を用いて表せ。 (r) から (r) は四角で囲まれた語句のうち適するものを書け。

コンデンサーとコイルが直列接続された部分(D-E-F間)の合成インピーダンスZは (r) $[\Omega]$ である。角周波数 $\omega=\omega_0=\frac{1}{\sqrt{LC}}$ のときZは (r) $[\Omega]$ となり,D-E-F間を流れる電流の最大値は (r) $[\Lambda]$ となる。また, $\omega<\omega_0$ のとき,Zの大きさは (r) $[\Lambda]$ よりも (r) 大きく,小さく なり,D-E-F間を流れる電流の位相は抵抗Rを流れる電流よりも $\frac{\pi}{2}$ (r) 進む,遅れる 。 $\omega>\omega_0$ のときは,Zの大きさは (r) よりも (r) 大きく,小さく なり,電流の位相は抵抗Rを流れる電流よりも $\frac{\pi}{2}$ (r) 進む,遅れる 。



4 図1のように、水平な床の上に固定されたシリンダーとピストンからなる断熱容器内に、単原子分子理想気体がn[mol]入っている。ピストンは水平方向になめらかに動く。容器は中に温度調節器を備えており、内部の気体の温度を精密に調節することができる。容器と温度調節器の熱容量は小さく無視できる。はじめ、容器内の気体の圧力は p_1 [Pa]、温度は T_1 [K]であり、ピストンは静止している。この状態を状態 1 とする。状態 1 から容器内の気体の圧力を $3p_1$ [Pa]まで高めることを試みる。気体定数をR[J/(mol·K)]とする。以下の問いに答えよ。答えは、特に指示がない場合はn, p_1 , T_1 , R のうち必要な記号を用いて書け。問(a)(v)、問(b)(iii)、(iv)および問(c)では設問の指示に従え。

- (a) 状態 1 からピストンを固定して、温度調節器で容器内の気体をゆっくりと加熱し、容器内の気体の圧力が $3p_1$ になった瞬間に加熱をやめる。この状態を状態 2 とする。
 - (i) 状態 2 における容器内の気体の温度 $T_2[K]$ を求めよ。
 - (ii) 状態 1 から状態 2 に変化する間の容器内の気体の内部エネルギーの変化 $\Delta U_{12}[J]$ を求めよ。
 - (iii) 状態 1 から状態 2 に変化する間にピストンが容器内の気体にする仕事 $W_{12}[J]$ を求めよ。
 - (v) 状態 1 から状態 2 に変化させるために要する熱量 $Q_{12}[J]$ を求めよ。
 - (v) 状態 1 における容器内の気体の圧力,温度,体積をそれぞれ 1.00×10^5 Pa, 3.00×10^2 K, 1.00×10^{-3} m³ とし,シリンダーの断面積を 1.00×10^2 cm² とする。状態 1 から状態 2 に変化させるために要する熱量 $Q_{12}[J]$ と,状態 2 において容器内の気体がピストンを押す力の大きさF[N] をそれぞれ求めよ。
- (b) 状態 1 から温度調節器で容器内の気体の温度を T_1 で一定に保ちながら、ピストンをゆっくりと図 1 の左方向に動かし、容器内の気体の圧力が $3p_1$ になった瞬間にピストンをとめる。この状態を状態 3 とする。
 - (i) 状態 3 における容器内の気体の体積 $V_3[m^3]$ を求めよ。
 - (ii) 状態 1 から状態 3 に変化する間の容器内の気体の内部エネルギーの変化 $\Delta U_{13}[J]$ を求めよ。
 - (iii) 状態 1 から状態 3 に変化する間の容器内の気体の圧力 p [Pa] と体積 V [m³] の関係を解答欄の図中に示せ。状態 1 と状態 3 の位置を黒点と状態の番号で示し,変化の経路をなめらかな線で示せ。
 - (iv) 状態1から状態3に変化する間に、ピストンが容器内の気体にする仕事の大きさに相当する面積 を解答欄の図中に斜線で示せ。

- (c) 状態 1 から温度調節器を使わずに気体が断熱された状態で、ピストンをゆっくりと図 1 の左方向に動かし、容器内の気体の圧力が $3p_1$ になった瞬間にピストンをとめる。この状態を状態 4 とする。状態 4 、間(a)の状態 2 および間(b)の状態 3 に関する以下の(ア)~(キ)の記述のうち正しいものを全て選べ。
 - (ア) 状態2における容器内の気体の温度は状態4よりも高い。
 - (イ) 状態3における容器内の気体の温度は状態4よりも高い。
 - (ウ) 状態3における容器内の気体の体積は状態4よりも大きい。
 - (エ) 状態2における容器内の気体の内部エネルギーは状態4よりも大きい。
 - (オ) 状態3における容器内の気体の内部エネルギーは状態4と等しい。
 - (カ) 状態2において容器内の気体がピストンを押す力の大きさは状態4よりも大きい。
 - (キ) 状態3において容器内の気体がピストンを押す力の大きさは状態4と等しい。

