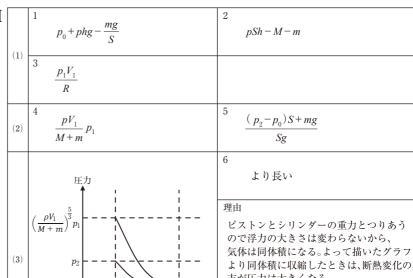
(平成29年度推薦)


物 理

	٦	r		
		ı		
		ı		

Ι	(-)	1 25GMm	$\sqrt{5}$ GM
	(1)	$\frac{2\pi}{5\sqrt{5GM}}$	$\frac{4}{5R^2}V_0^2$
	(2)	5 5	$\frac{1}{2} m V_{\rm A}^2 - \frac{5 \text{GMm}}{L}$
	(2)	$\frac{7}{3}$	
	(3)	$\frac{5 \text{V} 3}{3}$ 8 (計算) $\frac{1}{3}$ 求める周期を T' とすると、半長軸の長さは $\frac{1}{3}$ $\frac{1}{3$	$\frac{L+\frac{L}{5}}{2} = \frac{3}{5} L \ \text{lb}$ $\therefore T' = \frac{3\sqrt{3}}{2} T$ (答) $\frac{3\sqrt{3}}{2}$

	$\frac{1}{L}I$		2	負
(1)		$ \begin{array}{c c} H_x \\ \hline 0 \\ \underline{\downarrow} + x_R \\ \hline 2 \end{array} $		
(2)	4 – mad		5	負
	磁石の向き	(i)磁気力のx成分の	符号	(ii) 移動
	NSNS	負		しない
(3)	NSSN Œ			右
	SNNS 負			左
	SNSN IE			しない

\prod

V₁ 体積

M + m

気体は同体積になる。よって描いたグラフ より同体積に収縮したときは、断熱変化の 方が圧力は大きくなる。 したがって、ピストンの位置は深くなる。

(平成29年度推薦) 化 学

	(a)	式 酢酸濃度 C: 0.020×100 1.0×1	$\frac{10^{3} = 2.0 \times 10^{-3} (\text{mol/L})}{10^{-5} = 2.0 \times 10^{-4} \cdot \text{pH} = -\log_{10}(2.0 \times 10^{-4}) = 3.70}$	答 3.7
	(b)	$ H^{+} = 0.040 \times \frac{100}{100 + 100} = 2$ $\therefore pH = -\log_{10}(2.0 \times 10^{-2})$	$0 \times 10^{-2} (\text{mol/L})$	答 1.7
問(1)	(c)	式 未反応の KOH: 0.040× 100	$\begin{array}{c} \frac{100}{100} - 0.020 \times \frac{100}{1000} = 2.0 \times 10^{-3} (\text{mol/L}) \\ \times 10^{-2} (\text{mol/L}) \ \ \therefore \text{pH} = 14 + \log_{10}(1.0 \times 10^{-2}) = 12.0 \end{array}$	答 12.0
	(d)	式 [CH ₃ COO-]≒[CH ₃ COOH]	$$\fint $\fint \fint $\fint \fint \$	答 4.7
	(e)	$\stackrel{?}{\Rightarrow}$ [CH ₃ COO ⁻] $\stackrel{?}{\Rightarrow}$ $\frac{1}{2}$ [CH ₃ COOI	H] $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	答 4.4
		化合物名	化学反応式	
	(a)	濃硝酸	$Cu+4HNO_3 \rightarrow Cu(NO_3)_2+2H_2O+2H_3O$	NO_2
	(b)	亜硫酸水素ナトリウム	NaHSO ₃ +H ₂ SO ₄ → NaHSO ₄ +H ₂ O+ (\sharp t : \sharp 2NaHSO ₃ +H ₂ SO ₄ → Na ₂ SO ₄ + t :	
問(2)	(c)	硫化鉄(Ⅱ)	FeS+H ₂ SO ₄ → FeSO ₄ +H ₂ S	
	(d)	ヨウ化ナトリウム	2NaI+H ₂ O ₂ +H ₂ SO ₄ → Na ₂ SO ₄ +2H	2O+I2
	(e)	塩化亜鉛	ZnCl ₂ +H ₂ S → ZnS+2HCl	

Π		(a)	式 ヨウ素の原子量をxとすると、 x:35.45 = (6.858-3.160):(4.19	.160) $\therefore x = 127.15$	答 127.2	
	問(1)	(p)	式 内容積を V(L)、気体の質量を W(g 気体の状態方程式より W=1.00×10 ⁵ ×4.0× V RT=P× 2.0+	答 2.67×10 ⁴ Pa		
		(c)	式 リチウムの原子番号 Z は 3 であるから イオン化エネルギーは、1.31×10 ³ ×3	答 1.18×10 ⁴ kJmol ⁻¹		
		(a)	1.0mol/L H ₂ SO ₄ 3電球 (3.0V電波		反応式 $H_2SO_4+Ba(OH)_2 \rightarrow BaS$ 式 滴下量を x mL とすると、 $1.0 \times \frac{x}{1000} = 0.10 \times \frac{200}{1000}$	答
	問(2)	と (b)	0.10mol/L Ba(OH) ₂ ag 200ml ②ビーカー かくはんのための回転子	(e)	1000 1000 1000 1000 ∴ x = 20.0 [mL] 電球の明るさは、滴下が進むに中和点で最も暗くなる。そく滴下が進むと次第に明るく:	従って暗くなり、 の後、40mL まで

	(つづ	き)									
III		()	ア 構造異性体			立体異性体			ウ シスートランス異性体 (または、幾何異性体)		
		(a)	エ 光学異性体 (または、鏡像	異性体)	[†] α-	- アミノ酢	· 俊		л L		.,,
			A	В		С		D		Е	
			H ₃ C-CH ₂ -CH ₂ -CH ₃	H ₃ C-CH-	CH_3	H ₃ C-C	H ₂ -OH	H_3C	C-O-CH ₃	H ₃ C-CH ₂ -C	CH ₂ -OH
	問(1)	(b)		CH ₃							
		(D)	F	G		Н		I		J	
			H ₃ C-CH-CH ₃	H ₂ C=CH-CH	2-CH ₃	H ₃ C-CH	CH-CH ₃	H ₃ C		H ₃ C	,_H
			ÓН					Ĥ	C=C H	H H	CH ₃
		(a)	ア 縮 (合)	イ付加		ゥ けんſ	Ľ	ェ塩	析	オ ホルマー (または、アセ	
	問(2)	(b)	HO-C- O C CH ₂ -CH-CH ₂ O-C-CH ₃	0	ОН СН ₂ -(CH - -C-CH ₀	D		- CH ₂ - OH	CH ₂ -C	H
			0 C CH ₃	0		O C CH ₃			CH ₂	Y	H
			繰返し単位の 192n+18=32			る。よっ	て、				
		(c)	エステル結合	の数は 2n -	1=2	× 17 – 1 =	33 (個)			33個	

生 物 (平成29年度推薦)

_		W7	
1	問 1. ア アルコール発酵 イ ミトコンドリア ウ パスツール エ ピルビン酸		手色
	オ マトリックス カ	カ フォトトロピン キ 根冠 ク 表皮と皮層 ケ アミロプラスト コ 却	印制
	ケ アセチル CoA コ オキサロ酢酸 サ 2 シ FADH2	※イ・ウ・	エ (順不同)
	ス 電子伝達系	HR O - I I I I I I I I I I I I I I I I I I	
	問 2. 代謝産物 C ₃ H ₆ O ₃ ATPの数 2 <i>分</i> 子	問 2. 屈性は刺激源に対して一定の方向に屈曲するが、	傾性は
	問 2. 代謝産物 C ₃ H ₆ O ₃ ATPの数 2 <i>分</i> 子	刺 激 原 に 対 す る 方 向 性 は な い 点 。	(40字)
	問3. 酵素濃度が低い状況下でも代謝速度が低下せず、増殖に必要な核	(別解)	
	酸 や 脂 質 を 効 率 よ く 合 成 す る こ と が で き る 。	選 動 の 方 向 に つ い て 、 刺 激 源 に 対 す る 方 向 性 が 有	るのが
	(49字)	屈性、無いのが傾性である。	(38字)
	X * * * *		
II	問 1. ア 内分泌腺 イ 受容体 (レセプター) ウ 標的 エ 神経分泌 オ 軸索	問 3. 茎頂部 (茎の先端部)	
	カ 集合管 キ 再吸収 ク 抑制 ケ 血液(血管) コ 糖質コルチコイド	主政即 (主ツ)山洞即/	
	サ タンパク質 シ 増加	問 4. (a) 細 胞 の 根 端 側 の 細 胞 膜 に 局 在 す る 。	
	問 2. 成長ホルモン、甲状腺刺激ホルモン、	(-)	(16字)
	黄体刺激ホルモン (プロラクチン),		
	から一つ	(b) 下 側 の 細 胞 膜 に 局 在 す る よ う に な る 。	(17字)
	問 5. 尿 の 量 は 増 え る が 比 重 は 小 さ く な る 。		(17子)
	問 6. 副腎皮質刺激ホルモン放出ホルモン 減少する 副腎皮質刺激ホルモン 減少する	問 5. (a) ク の ど の 部 分 で も 均 等 に 上 昇 す る た め	、根端
	间 0. 邮目及具型版本产 CV 放出本产 CV	からの距離が等しければ同じ濃度である。	(39字)
III	問 1. ア タンパク質 イ 発現 ウ 制限酵素 エ DNAリガーゼ オ mRNA(伝令RNA)		
ш	カ rRNA (リボソームRNA) キ tRNA(転移RNA) ク レトロウイルス ケ 逆転写酵素 コ プライマー	(b) 輸送タンパク質が下側に局在して排出	するた
	サ ウラシル	め、下側の夕が高濃度になっている。	(37字)
			(0.4)
	問 2. 5' 末端から 3' 末端側へ進む 問 3. 18		
	問4. メチオニンとフェニルアラニンを除くと、1 つのアミノ		
	酸 を 指 定 す る コ ド ン は 2 ~ 6 通 り の 複 数 あ り 、 ア ミ ノ 酸		
	配 列 か ら 1 つ に 決 め る こ と が で き な い た め 。		
	(70字)		
	問 5. D N A に は m R N A 形 成 時 に ス プ ラ イ シ ン グ に よ っ て 取		
	り 除 か れ る イ ン ト ロ ン が 含 ま れ る た め 。		
	(43字)		
	問 6. 大 腸 菌 に は ス プ ラ イ シ ン グ を 行 う 機 能 が な い の で 、 イ ン		
	ト ロ ン の 領 域 を 含 ん だ ま ま の m R N A が 形 成 さ れ 、 目 的		
	の タ ン パ ク 質 と は 異 な る タ ン パ ク 質 が 形 成 さ れ る た め 。		
	(75字)		