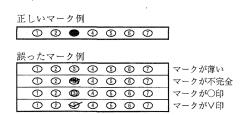
理 科

理科は 物理 化 学 **生物** のうち2科目を選択受験のこと。 理 | ……1頁 化 学 ……17 頁 生物 ……29 頁

問題 🛘 はマークシート方式, 🗖 は記述式である。

Ⅱ の解答はマークシートに, Ⅲ の解答は解答用紙に記入すること。


〔注 意 事 項〕

- 1. 監督者の指示があるまでは、この問題冊子を開かないこと。
- 2. マークシートは、コンピュータで処理するので、折り曲げたり汚したりしないこと。
- 3. マークシートに、氏名・受験番号を記入し、科目選択・受験番号をマークする。マークがない場 合や誤って記入した場合の答案は無効となる。

受験番号のマーク例(13015の場合) 受 験 万位 千位 十位 -位 百位 0 0 0 1 0 1 2 2 2 2 2 (3) 3 (3) 3 4 4 4 4 4 **5** (5) (5) (5) 6 (6) 6 6 **6** 7 (7) (7) (7) (7) (8) (B) **B** (8)

- 4. マークシートにマークするときは、HB または B の黒鉛筆を用いること。誤ってマークした場合 には、消しゴムで丁寧に消し、消しくずを完全に取り除いたうえで、新たにマークし直すこと。
- 5. 下記の例に従い、正しくマークすること。

(例えば3と答えたいとき)

- 6. 各科目とも基本的に正解は一つであるが、科目によっては二つ以上解答を求めている場合がある ので設問をよく読み解答すること。
- 7. 解答は所定の位置に記入すること。

化 学

必要なら次の値を用いなさい。原子量: H=1.0, C=12, N=14, O=16, Na=23, Mg=24, Al=27, S=32, Cl=35.5, K=39, Ca=40, Fe=56, Ag=108, I=127, Ba=137, Pボガドロ定数: $N_A=6.0\times 10^{23}$ /mol, 気体定数: $R=8.3\times 10^3$ $Pa\cdot L/(K\cdot mol)$, $ファラデー定数: <math>F=9.65\times 10^4$ C/mol, 気体はすべて理想気体として扱うものとする。また, $\log_{10}2=0.30$, $\log_{10}3=0.48$, $\log_{10}5=0.70$, $\sqrt{2}=1.41$, $\sqrt{3}=1.73$, $\sqrt{5}=2.24$ とする。化学式が[]で囲まれている場合は、その物質のモル濃度[mol/L]を表している。

		その物質のモル濃度[mol/L]を	
	以下の問題(第1問〜第3問)	の答えをマークシートに記し	なさい。
第1問	引 次の各問いに答えなさい	。〔解答番号 1 ~	10
問	1 地球に関する次の問い(a)	, (b)に答えなさい。	
	(a) 次の元素のうち, 地表	から 16 km 下までの大陸の地	殻に存在する元素の割合(質量パー
	セント)が最も小さいも	のはどれか。正しいものを	①~⑥の中から一つ選びなさい。
	1		
	① 酸 素	② ケイ素	③ アルミニウム
	④ 鉄	⑤ カルシウム	⑥ 水 素
	(b) 大気中では ¹⁴ C の生じ	る量と壊変する量がつり合って	ている。植物は外界から ½C を取り
	込んでいるが、枯れると	取り込みが途絶え,植物中の) ¹⁴ C は壊変して減り続けることカ
	ら、この現象を利用して	て植物の枯れた時期を推定す	ることができる。 ¹⁴ Cの半減期を
	5.73 × 10 ³ 年とすると,	¹⁴ Cの濃度が生存時の 8.0 %	になった植物が枯れたのは何年前
	か。最も近い値を①~⑥	の中から一つ選びなさい。	2 年
	① 5.7×10^3	② 1.2×10^4	3 1.9 × 10 ⁴
	(4) 2.1×10^4	(5) 2.9×10^4	$6) 34 \times 10^4$

問 2	硫黄のコロ	コイド溶液に	直流電圧を	とかけると	,硫黄粒	立子が陽村	面へ移動	りした。次	(のイオ)	ンのう
	ち、最も少れ	ない物質量で	硫黄のコロ	コイド粒子	を沈殿さ	ゞせるイン	オンはと	されか。正	しいもの	のを(1
			<u> </u>		C //U/X C	0 1 /	, , ,,,,	. 400 0 11		,
,	~(6)(7)中かり	ら一つ選びな	500	3						
	① K+	② Na	a ⁺ (3	3) Ca ²⁺	4	Al^{3+}	(5)	Cl ⁻	6 9	SO ₄ ²⁻
								ı		
== .	V = 111. /	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \							4	
問 3	次の問い(a), (b)に答え	なさい。						i .	
	*									
(a) フッ素。	とフッ化水素	の水への溶	容解度が大	きく異な	なる理由。	として最	もも適切な	ものを(1)~(6
		一つ選びなさ	·	. 1						
			Laurence,		/ 7	1-1-7				
	① 分子	を構成してい	る各原士(リイオンギ	住の遅い	いによる。)			
	② 分子	を構成してい	る中性子の	り数の違い	による。					
	③ 分子	中の電荷の偏	りの違いに	こよる。						
	④ 分子;	を構成してい	る共有結合	うの結合距	離の違い	こによる。				
		•								
	_	を構成してい			(ノ) 安文(ノ) 追	重∧ √ ケ ケ ∨	් ං			
	⑥ 分子(の酸化作用の	違いによる	, o o						
(b) 油脂の2	不飽和度の目	· 安として.	"ヨウ素侃	盾"という	う 指標がす	利用され	している。	ヨウ素作	価は.
		gに付加する		_						
	ウ素価が	86.2であっ7	た時、油脂	11分子に1	含まれる	C = C =	重結合	の数はい	くつか。	EL
*	い数を①-	~⑥の中から	一つ選びな	いさえ	5					
	① 1	② 2	(3	3 3	(4)	4	(5)	5	(6)	6
		<u> </u>		-	Ŭ		<u> </u>	-		

問 4 ステアリン酸をベンゼンに	容かし、水面に静かに滴下	し,ベンゼンを蒸発させると単分子									
膜ができる。ステアリン酸 w	[g]をベンゼンに溶かして	100 mLの溶液を調製し,水の入っ									
た水槽にこの溶液を $v[mL]$ 滴下したところ単分子膜ができた。単分子膜の面積を $S_m[cm^2]$,											
ステアリン酸1分子が水面_	上で占有する面積を S_1 [cɪ	m²〕,ステアリン酸のモル質量を									
M[g/mol]とする。次の問い(a), (b)に答えなさい。ただし	し、単分子膜中の分子間の隙間はな									
いものとする。											
(a) この溶液 v[mL]中に含ま	れるステアリン酸の物質量	量を表す式として正しいものを①~									
⑥の中から一つ選びなさい。											
		100 7/									
$\frac{w}{100 M}$	\bigcirc 100 Mv	$\bigcirc 100 \ vw$									
$\frac{4}{100 Mv}$	$\stackrel{\smile}{w}$	$\stackrel{ ext{$\otimes$}}{}$ M									
(b) この実験から算出される	アボガドロ完数を表す式と	して正しいものを①~⑥の中から一									
つ選びなさい。 7	7、4.70 1 1 1 1 1 2 2 3 5 3 5 5 5 5	CHOVED WAYING									
$\bigcirc \frac{100 S_m}{MS_1 vw}$											
$4) \frac{S_1 vw}{100 Mc}$	$\frac{100 S_1 v}{1}$	$S_m w$									
$100 MS_m$	$MS_m w$	$00 MS_1 v$									
問 5 鉄の単体 x [g]をビーカーに	~ 7. 2 2	の硫酸水溶液 150 mL を加えたとこ									
		らずべて溶けて水溶液となった。こ									
,		ラティー (i)									
		さい。ただし、温度は常に25℃で									
	毀化剤を加えたことによる	水溶液の体積変化は無視できるもの									
とする。											
	して最も適切なものを(1)~⑥の中から一つ選びなさい。									
8											
① 淡緑色 ② 深青色	③ 淡桃色 ④ 黄	色 ⑤ 褐 色 ⑥ 無 色									
_	を①~⑥の中から一つ選び	Accounts to the second									
① 2.8×10^{-2}	② 5.6×10^{-2}	$3 8.4 \times 10^{-2}$									
(4) 2. 8 × 10 ⁻¹	5.6×10^{-1}	$6 8.4 \times 10^{-1}$									

(c) 下線(ii)の沈殿が生じはじめたときの溶液のpH はいくつか。水のイオン積 $K_{\rm w}=1.0\times 10^{-14} ({\rm mol/L})^2$,水酸化鉄(Π)の溶解度積 $K_{\rm sp}=4.0\times 10^{-38} ({\rm mol/L})^4$ とする。最も近い値を①~⑥の中から一つ選びなさい。 $\boxed{10}$

① 1.8

② 2.3

3 2.9

④ 3.7

5 4.7

6 5.3

図はペプチド結合と一部ジスルフィド結合によって 8 種類の α -アミノ酸が結合した化合物である。R1~R6 はそれぞれ異なるアミノ酸の側鎖であり、表に示すいずれかの構造である。この化合物を加水分解したところ(イ)~(ハ)の 3 箇所のみで結合が切断されそれ以外の反応はおこらず、ペプチド I~ Π が生じた。

表

アミノ酸の名称 (略記号)	アミノ酸の分子量	側鎖
アスパラギン (Asn)	132	$-CH_2-C \stackrel{O}{\underset{NH_2}{{\sim}}}$
グルタミン (Gln)	146	$-CH_2-CH_2-C \stackrel{O}{\underset{NH_2}{\bigcirc}}$
グリシン (Gly)	75	—н
イソロイシン (Ile)	131	CH₃ —CH—CH₂—CH₃
ロイシン (Leu)	131	-CH ₂ -CH CH ₃ CH ₃
チロシン (Tyr)	181	−CH₂ —OH

(ⁱ												
問	1 ペプチドIはC末端	端がアミノ酸 A,Nラ	 端がアミノ質	发Βで構成される	る分子量 210 以下の							
	ジペプチドであった。ペプチドIを加水分解して、アミノ酸 A、B を単離したところ、アミ											
	ノ酸 A には鏡像異性体がなかった。また、262 mg のアミノ酸 B を分析したところ、28 mg											
	の窒素が含まれていた	こ。次の問い(a), (b)に	答えなさい。									
	(a) アミノ酸 A は何z	か。正しいものを①~	-⑧の中から-	-つ選びなさい。	1							
	① グリシン	② プロリン	③ シス	テイン ④	イソロイシン							
	⑤ ロイシン	⑥ アスパラギン	⑦ グル	タミン ⑧	チロシン							
	(b) アミノ酸Bの分	子量はいくつか。	最も近い値を	①~⑧の中から	一つ選びなさい。							
	2											
	① 75	② 115	③ 121	4	131							
	⑤ 152	6165	⑦ 181	8	210							
問	2 ペプチドⅡには2種	重類のアミノ酸のみカ	含まれていた	。これらアミノ『	骏のうち, 一方のア							
	ミノ酸のみが示す性質	質はどれか。正しいも	のを①~⑥の	中から一つ選び	なさい。 3							
	① 水酸化ナトリウム		.し. 酢酸鉛(]	Ⅱ)水溶液を加え.	ると、黒色沈澱を生							
	じる。											
	② 薄い水酸化ナト	Jウム水溶液を加え [、]	て混ぜた後,落	専い硫酸銅(Ⅱ)オ	(溶液を少量加える							
	と、赤紫色に呈色す	トる。		,								
	③ 濃硝酸を加えてか	□熱すると黄色になり	, さらに, 冷	却後アンモニア	水を加えて塩基性に							
	すると橙黄色に呈色	立する。										
		容液を加えて温めると	. 赤紫~青紫	色に呈色する。								
		、リウムを加えて加熱			生じる。							
		リウム水溶液を加える										
	O - 2 N - 2 Inv	· · · · · · · · · · · · · · · · · · ·	~, HMC 16	/·•/0								

と. 1.32gの二酸化炭素が生成した。次の問い(a)~(c)に答えなさい。 (a) アミノ酸 E は何か。正しいものを①~⑧の中から一つ選びなさい。 ① グリシン ② プロリン ③ システイン ④ イソロイシン ⑤ ロイシン ⑥ アスパラギン ⑦ グルタミン ⑧ チロシン (b) アミノ酸 H は何か。正しいものを①~®の中から一つ選びなさい。 グリシン ② プロリン ③ システイン ④ イソロイシン ⑥ アスパラギン ⑦ グルタミン ⑧ チロシン ⑤ ロイシン (c) 鏡像異性体を区別すると、ペプチドⅢとして考えられるものは何種類か。正しい数を① ~(8)の中から一つ選びなさい。 6 (1) 8 (2) 16 ③ 24 4 32 ⑤ 64 (6) 128 7) 256 (8) 768

問3 ペプチドⅢはテトラペプチドであり、N末端側からアミノ酸 E, F, G, と連なり、C末

問 4 R3とR5を側鎖に持つアミノ酸はそれぞれ何か。正しい組み合わせを①~⑩の中から一つ選びなさい。 7

	R 3	R 5
1	Gln	Leu
2	Asn	Leu
3	Gln	Gly
4	Asn	Gly
(5)	Ile	Gly
6	Gly	Ile
7	Ile	Leu
8	Leu	Ile
9	Gln	Ile
10	Asn	Ile

第3問	酸	• ;	塩基の	り中を	和に	関す	ると	欠の	各問	161	こ答え	えな	ない。	ただ	L,	温度に	は常に	25°	Cで-	一定であ
V),	水	のイス	ナンオ	漬 <i>K</i>		1.0	0 ×	10-	·14 (n	nol/I	$(L)^2$	とし,	指示	薬の	体積は	無視	する。	Э	

問 1 ある 2 価の酸 H₂X (構造: H-X-H)は 2 段階に電離し、電離定数 K₁ および K₂ は図 1 の ように示すことができる。

$$H_{2}X \xrightarrow{K_{1}} HX^{-} + H^{+} \qquad K_{1} = \frac{[HX^{-}][H^{+}]}{[H_{2}X]}$$

$$HX^{-} \xrightarrow{K_{2}} X^{2-} + H^{+} \qquad K_{2} = \frac{[X^{2-}][H^{+}]}{[HX^{-}]}$$

図 1

 3.00×10^{-1} mol/Lの H_2X 水溶液 100 mL に対して同濃度の水酸化ナトリウム水溶液で適当 な指示薬を用いて中和滴定したところ第1中和点および第2中和点を得た。次の問い(a)~(d) に答えなさい。

- (a) $[X^{2-}]$ を K_1 , K_2 , $[H_2X]$, $[H^+]$ で表すとどのようになるか。正しいものを①~⑧の中 から一つ選びなさい。
 - ① $\frac{(K_1 + K_2)[H_2X]}{[H^+]}$ ② $\frac{[H^+]}{(K_1 + K_2)[H_2X]}$ ③ $\frac{(K_1 + K_2)[H_2X]}{[H^+]^2}$
- $(4) \frac{[H^{+}]^{2}}{(K_{1} + K_{2})[H_{2}X]}$ $(5) \frac{K_{1}K_{2}[H_{2}X]}{[H^{+}]}$ $(6) \frac{[H^{+}]}{K_{1}K_{2}[H_{2}X]}$

- (b) 第1中和点のpHが6であったとする。H₂Xの電離を以下のように表したときの電離 定数 K_{\pm} はいくつか。最も近い値を① \sim \$の中から一つ選びなさい。ただし、 $[H^{+}]$ およ び[OH⁻]は[Na⁺]より充分に小さいとする。 $(mol/L)^2$

$$H_2X \stackrel{K_{\underline{+}}}{\longleftrightarrow} X^{2-} + 2H^+$$

- ① 6.67×10^{-16} ② 1.50×10^{-16} ③ 1.22×10^{-16}
- (4) 1.00 × 10⁻¹⁶
- (5) 6.67×10^{-12} (6) 1.50×10^{-12} (7) 1.22×10^{-12} (8) 1.00×10^{-12}

(こ) 滴定過程において	第1中	「和点を過ぎて」	pH が 7	になったとき,	$[H_2X]$	$: [HX^-] = 1 :$	10^{3}
	であったとすると,	K_1 l ‡	いくつになる	か。最	も近い値を①~	⑧の中	から一つ選びな	さな
	Vao 3 mol	/L						
	① 1.00×10^{-3}	2	1.00×10^{-4}	3	1.00×10^{-5}	4	1.00×10^{-6}	
	(5) 1.00×10^{-7}	6	1.00×10^{-8}	7	1.00×10^{-9}	8	1.00×10^{-10}	

(d) 第 2 中和点の pH はいくつになるか。最も近い値を① \sim 8の中から一つ選びなさい。 ただし、 $[OH^-]$ は $[Na^+]$ より充分に小さいとする。 $\boxed{4}$

- ① 10.1 ② 10.3 ③ 10.5 ④ 10.7 ⑤ 12.1 ⑥ 12.3 ⑦ 12.5 ⑧ 12.7
- **問 2** ある分子 $H_2N-Y-COOH$ は水溶液の pH に依存して電荷状態が変化し、+1、0、-1 のいずれかをとる。この分子の酸性水溶液を水酸化ナトリウム水溶液で滴定すると 2 価の酸 H_2X と 同 様 に 2 段 階 の 中 和 反 応 が 起 き る の で、 $H_2N-Y-COO^-$ を Z^- と す る と $^+H_3N-Y-COOH$ は H_2Z^+ と書き換えられ、電離定数 K_I および K_I は図 2 のように示すことができる。次の問い(a)~(c)に答えなさい。

$$H_2Z^+ \xrightarrow{K_I} HZ + H^+$$
 $K_I = \frac{[HZ][H^+]}{[H_2Z^+]} = 5.00 \times 10^{-3} \text{ mol/L}$
 $HZ \xrightarrow{K_{II}} Z^- + H^+$
 $K_{II} = \frac{[Z^-][H^+]}{[HZ]} = 2.00 \times 10^{-10} \text{ mol/L}$
 $\boxtimes 2$

(a) 平衡混合物の電荷が全体としてゼロとなるときの pH を等電点という。等電点はいくつになるか、最も近い値を①~⑥の中から一つ選びなさい。
 ① 2.3
 ② 5.6
 ③ 6.0
 ④ 7.0
 ⑤ 7.4
 ⑥ 9.7

H₂N-Y-COOH の水溶液中の実際の平衡状態と電離定数は図3のように示すことができ る。

$$K_{II} = \frac{ \text{H}_{3} \text{N} - \text{Y} - \text{COO}^{-} + \text{H}^{+}}{\text{H}_{2} \text{N} - \text{Y} - \text{COO}^{-} + 2 \text{H}^{+}}$$

$$K_{IV} = \frac{ \text{I}^{+} \text{H}_{3} \text{N} - \text{Y} - \text{COO}^{-} \text{I} \text{I}^{+} \text{I}}{ \text{I}^{+} \text{H}_{3} \text{N} - \text{Y} - \text{COOH} \text{I}}$$

$$K_{IV} = \frac{ \text{I}^{+} \text{H}_{3} \text{N} - \text{Y} - \text{COOH} \text{I} \text{I}^{+} \text{I}}{ \text{I}^{+} \text{H}_{3} \text{N} - \text{Y} - \text{COOH} \text{I}}$$

$$K_{V} = \frac{ \text{I}^{+} \text{N} - \text{Y} - \text{COO}^{-} \text{I} \text{I}^{+} \text{I}}{ \text{I}^{+} \text{H}_{3} \text{N} - \text{Y} - \text{COO}^{-} \text{I}}$$

$$K_{VI} = \frac{ \text{I}^{+} \text{N} - \text{Y} - \text{COO}^{-} \text{I} \text{I}^{+} \text{I}}{ \text{I}^{+} \text{N} - \text{Y} - \text{COO}^{-} \text{I}}$$

図3

(b) $K_{\mathbb{I}}$ を $K_{\mathbb{I}}$, $K_{\mathbb{V}}$, $K_{\mathbb{V}}$, $K_{\mathbb{V}}$, で表すとどのようになるか。正しいものを①~⑩の中から一 つ選びなさい。ただし、 $K_{\mathbb{II}}$ 、 $K_{\mathbb{V}}$ 、 $K_{\mathbb{V}}$ 、 $K_{\mathbb{V}}$ すべての文字を使用するとは限らない。

①
$$K_{\mathbb{II}} + K_{\mathbb{IV}}$$

$$2 \frac{1}{K_{\pi} + K_{\pi}}$$

$$4 \frac{K_{II} + K_{IV}}{K_{II}K_{IV}}$$

$$\bigcirc$$
 $K_{\rm V}$ + $K_{\rm V}$

①
$$K_{III} + K_{IV}$$
 ② $\frac{1}{K_{III} + K_{IV}}$ ③ $\frac{K_{III}K_{IV}}{K_{III} + K_{IV}}$ ④ $\frac{K_{III} + K_{IV}}{K_{III}K_{IV}}$ ⑤ $K_{V} + K_{VI}$ ⑥ $\frac{1}{K_{V} + K_{VI}}$ ⑦ $\frac{K_{V}K_{VI}}{K_{V} + K_{VI}}$ ⑧ $\frac{K_{V} + K_{VI}}{K_{V}K_{VI}}$

(c) 等智	電点のときを考え	る。そ	吹の問い(i)~(iv)に	答える	なさい。ただし,	$K_{ ext{IV}}$ (は₭∭より充分に
小さの	$\langle \ , \ K_{ extsf{V}} \mid \sharp K_{ extsf{V} extsf{I}} \mid \sharp \ \mathcal{H}$	充分	に小さいとする。				
/.\	·+	- T I	-+	- 7 ~		ش مان	
			T ⁺ H ₃ N-Y-COOF	4] <i>(</i>),	門借か。最も近い	値を	:(1)~(8)の中から
	つ選びなさい。 _	7					·
	1.00×10^{-8}	2	5.00×10^{-5}	3	1.00×10^{-4}	4	5.00×10^{-3}
(5)	5.00×10^3	6	1.00×10^4	7	5.00×10^{5}	8	1.00×10^{8}
(ii) [T+H ₃ N-Y-COOI	H]が	[H ₂ N-Y-COOH]の1	.00×10 ² 倍であ	った	E。 Kwはいくつ
か。	最も近い値を①~	~80	の中から一つ選びた	くさな	, 8 mol	/L	*
1	1.00×10^{-8}	2	5.00×10^{-5}	3	1.00×10^{-4}	4	5.00×10^{-3}
(5)	5.00×10^3	6	1.00×10^{4}	7	5.00×10^{5}	8	1.00×10^{8}
(iii) [$[^{+}H_{3}N-Y-COO^{-}]$	-]は[$[H_2N-Y-COOH]$]の何	「倍か。最も近い値	直を(1)~⑧の中から一
つ道	選びなさい。	9	倍				
1	1.00×10^{-8}	2	5.00×10^{-5}	3	1.00×10^{-4}	4	5.00×10^{-3}
5	5.00×10^3	6	1.00×10^{4}	7	5.00×10^{5}	8	1.00×10^{8}
(iv) F	K _{VI} はいくつか。最	:も近	:い値を①~⑧の中	から	一つ選びなさい。		10 mol/L
1	1.00×10^{-8}	2	5.00×10^{-5}	3	1.00×10^{-4}	4	5.00×10^{-3}
(5)	5.00×10^3	6	1.00×10^{4}	7	5.00×10^{5}	8	1.00×10^{8}
					N		

Ⅱ 次の各問いの答えを解答用紙に記しなさい。

一般に A_aB_b で表される難溶性塩を水に加えてよくかき混ぜると、ごく一部が溶解して飽和溶液になり、(I)式の溶解平衡が成り立つ。

$$A_aB_b$$
 (固) $\iff aA^{m^+} + bB^{n^-}$ (ただし, $am = bn$) ------(I)

このときの溶解度積 K_{st} は(II)式で表され、温度が変わらなければ常に一定に保たれる。

$$K_{SD} = [A^{m+}]^a [B^{n-}]^b \qquad \qquad ------ (II)$$

この難溶性塩 $A_a B_b$ の飽和溶液へ A^{m^+} もしくは B^{m^-} を加えると, $A_a B_b$ が沈殿する。このよう に難溶性塩の構成イオンを添加することにより,難溶性塩の溶解度が (A) くなる現象を (D) という。この沈殿生成反応を利用した沈殿滴定によって特定のイオン濃度を求めることができる。以下の実験のように塩化物イオン濃度を求める方法をモール法という。

- **問1** (イ) および (ロ) に当てはまる語句をそれぞれ記しなさい。
- **問2** (ハ) および (二) に当てはまる化合物の化学式をそれぞれ記しなさい。
- **問 3** 滴定開始前の Y における塩化物イオン濃度指数 pCl = $-\log[Cl^-]$ はいくつか。数値を記しなさい。
- 問 4 縦軸に pCl, 横軸に使用した硝酸銀水溶液の液量として滴定曲線の概図を描きなさい。
- 問 5 塩化ナトリウム水溶液 X の濃度は何 mol/L か。数値を記しなさい。
- **問 6** Yに含まれていたクロム酸カリウムの濃度は何 mol/L か。数値を記しなさい。
- **問7** 塩基性条件下ではモール法を用いた塩化物イオンの定量ができない。この理由を 50 文字 以内で記しなさい。ただし、化学式は用いず、句読点は1文字として数えなさい。