注 意

問題の文中の ア , イウ などには、特に指示のないかぎり、数値または符号(-)が入る。これらを次の方法で解答用紙の指定欄にマークせよ。

(1) ア, イ, ウ, …の一つ一つは、それぞれ 0 から 9 までの数字、または – の符号のいずれか一つに対応する。それらをア, イ, ウ, …で示された解答欄にマークする。

〔例〕	アイ		00123456789
		1	\bigcirc 0 1 2 3 4 5 6 7 \bigcirc 9

(2) 分数形で解答する場合は、既約分数(それ以上約分できない分数)で答える。分数の符号は分子につけ、分母につけてはならない。

	ウエ	4		
〔例〕		- に- ⁴ 5と答えたいとき	ウ	• 0 1 2 3 4 5 6 7 8 9
	才	0	エ	\bigcirc 0 1 2 3 \bigcirc 5 6 7 8 9
			オ	○ 0 1 2 3 4 6 6 7 8 9

- (5) 選択肢から一つを選んで、番号を答える場合もある。

I (1) $0 < \theta < \pi$ で $3\sin\theta + \cos\theta = 1$ のとき,

$$\sin \theta = \frac{\boxed{7}}{\boxed{1}}, \qquad \sin 2\theta = \frac{\boxed{\cancel{\cancel{0}}} \pm \cancel{\cancel{1}}}{\boxed{\cancel{\cancel{0}}} \pm \boxed{\cancel{0}}}, \qquad \tan \theta = \frac{\boxed{\cancel{\cancel{0}}} \pm \cancel{\cancel{0}}}{\boxed{\cancel{0}}}$$

である。

- (2) 袋の中に赤玉が4個と白玉が4個入っている。袋から玉を1個ずつ取り出し、 左から右へ横1列に8個並べる。
 - (i) 赤玉と赤玉が隣り合わない確率は サ である。
- (3) (i) a_1 , a_2 , a_3 を正の数とする。 $(a_1+2a_2+3a_3)\left(\frac{1}{a_1}+\frac{2}{a_2}+\frac{3}{a_3}\right)$ の最小値は フテ である。
 - (ii) a_1, a_2, \dots, a_n を n 個の正の数とする。 $\left(\sum_{k=1}^n k a_k\right) \left(\sum_{k=1}^n \frac{k}{a_k}\right)$ の最小値が 2025 となるのは n= ト のときである。

II	数学の小テ	ストを3	3 回行	_{すった}	:。点	数は	0点	以上	10 点	以下	の整	数で	ある。
	(1) 下の表は	Aから.	Jの生	上徒 1	.0人	に対	して	実施る	された	21 Ē	目目の)テス	こトのデータ
	である。												
		生徒	A	В	С	D	E	F	G	Н	Ι	J	
		点数	9	6	1	10	8	5	7	2	i	j	
	z σ 10 λ σ)占数の	亚色	値沿	6 占	分告	対) 十つ	でも	らった	> +,	・だし	Ι (

この 10 人の点数の平均値は 6 点,分散は 9 であった。ただし,I の点数 i は I の点数 i より高かった。I から I の生徒 I の点数の平均値は I の点数 i は I かり,分散は I である。I 回目のテストのデータの第 I 四分位数は I 力 点,中央値は I 力 I 点,第 I 四分位数は I 力 点である。

(2) 下の表は A から J の生徒 10 人に対して実施された 2 回目のテストのデータである。

生徒	A	В	С	D	Е	F	G	Н	Ι	J
点数	9	b	c	7	8	9	7	h	7	7

この 10 人の点数の平均値は 7 点,分散は 2 で,B の点数 b と H の点数 h は同じであった。b= ケー,C の点数 c は c= コーである。

(3) 3回目のテストでは、A から J の生徒に加え、K と L の生徒 2 人が受験した。 下の表は 3 回目のテストのデータである。

生徒	A	В	С	D	E	F	G	Н	Ι	J	K	L
点数	2	4	8	4	7	7	4	5	4	5	k	l

- III a, b は $1 \le a < b \le 6$ を満たす自然数である。座標平面において、放物線 y = (x a)(x b) と放物線 $y = -(x a)^2 + b$ の共有点について考える。
 - (1) 共有点のx座標をaとbを用いて表すと

である。

- (3) x = 1 で共有点をもつのは $a = \boxed{}$ のときである。
- (4) 第1象限と第4象限に1つずつ共有点をもち,それら2つの共有点のx座標とy座標がともに整数であるのは $(a,b)=\begin{pmatrix} \boxed & f \end{pmatrix}$, $\begin{pmatrix} \boxed & J \end{pmatrix}$ のときであり,第1象限での共有点は $\begin{pmatrix} \boxed & J \end{pmatrix}$ 、 $\begin{pmatrix} \boxed & J \end{pmatrix}$ 、 $\begin{pmatrix} \boxed & J \end{pmatrix}$ となる。