数学

医学部

1 3以上の自然数nに対して,xの多項式

$$(x+1)(x+2)(x+3)\cdots(x+n)$$

- の展開を考える. 次の問いに答えよ.
- (1) x^n の係数を求めよ.
- (2) 定数項を求めよ.
- (3) x^{n-1} の係数を求めよ.
- (4) x^{n-2} の係数を求めよ.
- (5) x^{n-3} の係数を求めよ.

2	半径 4 の円に内接する \triangle ABC が $\sin A:\sin B:\sin C=6:5:4$ を満たしている. このとき, $\cos A=$ $ extbf{7}$
	であり、 $BC = $ イ である. また、 $\triangle ABC$ の面積は $\boxed{ \dot{ m p} }$ であり、 $\triangle ABC$ の内接円の半径は $\boxed{ m z }$ で
	ある. $\angle A$ の二等分線と辺 BC との交点を D とすると, $\triangle ABD$ の面積は, $\boxed{ m{ extbf{ ex}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
	である.

- 3 3 次関数 $f(x) = x^3 + 3x^2 + (m+3)x$ が極値をもつとき、次の問いに答えよ.
 - (1) 定数 m の値の範囲を求めよ.
 - (2) y=f(x) の傾きがm である接線を l_1 とする. l_1 の方程式、およびその接点 A の座標をm を用いて表せ.
 - (3) 点 A において l_1 と直交する直線を l_2 とする. y=f(x) と l_2 との交点のうち x 座標の最も小さい点の x 座標を α とするとき, α の最大値とそのときの m の値を求めよ.