問題 1

次の問いに答えよ。

- (1) $(x+2y+3z)^6$ を展開すると、 $x^2y^2z^2$ の係数は アイウエ である。
- (2) 重複を許して 5 つの自然数を選ぶとき, その積が 2025 になる組み合わせは 「オカ」 通りである。
- (3) 関数 $y = \frac{x^2}{x^2 6x + 12}$ の最小値は [キ],最大値は [ク] である。
- (4) 座標空間の 4 点 O(0,0,0), A(9,5,4), B(2,2,8), C(4,4,7) において,三角形 OAB の面積は $\boxed{ ケコ }$ であり,四面体 OABC の体積は $\boxed{ サシ }$ である。
- (5) $\sum_{k=1}^{7} \frac{k^2 1}{(k+1)!} =$ スセソタ である。
- (6) 多項式 $x^{20} + ax^{10} + b$ が $x^2 + x + 1$ で割り切れるとき、定数 a は t 、定数 b は t のある。
- (7) 座標平面上に 3 点 O(0,0), A(-3,0), B(3,0) がある。 $\left(\overrightarrow{OP}-\overrightarrow{OA}\right)\cdot\left(\overrightarrow{OP}-\overrightarrow{OB}\right)=0$ を満たす動点 P によって描かれる曲線で囲まれる領域の面積は $\boxed{\cancel{y}_{\pi}}$ であり, $|\overrightarrow{OQ}-\overrightarrow{OA}|+|\overrightarrow{OQ}-\overrightarrow{OB}|=10$ を満たす動点 Q によって描かれる曲線で囲まれる領域の面積は $\boxed{\cancel{\lambda}_{\pi}}$ である。
- (8) 座標平面上の曲線 C_1 : $y = -6x^2 + 8tx 9$ と曲線 C_2 : $y = x^3 9x^2 + 3x + 6$ が相異なる 3 点で交わり、さらに曲線 C_1 と曲線 C_2 によって囲まれる 2 つの部分の面積が等しくなるとき、 $t = \lceil N \rceil$ である。このとき 2 つの部分の面積の和は $\lceil E \rceil N \rceil$ である。

問題 2

次の問いに答えよ。

- (1) 自然数 n に対して n(n+1)(n+2) が 6 で割り切れることを示せ。
- (2) 実数 a, b に対して 2 次方程式 $x^2 + ax + b = 0$ が 2 つの整数解をもつとき, $a^2b 8b 2b^2$ は整数となり, 6 の倍数であることを示せ。

問題3

次の問いに答えよ。

(1) 正の実数 a, 円周率 π として, 実数 x の関数

$$f(x) = \left(\frac{2}{\pi}\right)^{x-a} - 1$$

に対して、方程式 f(x)=0 の実数解が x>0 の範囲でただ一つ存在することを証明 せよ。

(2) 実数 x の関数

$$g_k(x) = 2^k \left(\frac{2}{\pi}\right)^x - 1$$

とする。k=4 のとき,方程式 $g_4(x)=0$ の実数解を β_4 とする。 $n_4<\beta_4< n_4+1$ を満たす整数 n_4 を求めよ。

(3) 次の不等式が成り立つことを示せ。

$$\frac{13}{8} < \log_2 \pi < \frac{5}{3}$$