問題 1

次の問いに答えよ。

- (1) xy 平面において、曲線 $C: y = x^3 x$ の x = 0 における法線 ℓ の傾きは \boxed{r} であり、曲線 C と法線 ℓ と直線 x = 1 と x = -1 で囲まれた部分を y 軸のまわりに 1 回転してできる立体の体積は $\boxed{1}$ π である。
- (2) $\left(\frac{\cos\left(\frac{11\pi}{6}\right)+i\sin\left(\frac{11\pi}{6}\right)}{\cos\left(\frac{2\pi}{9}\right)+i\sin\left(\frac{2\pi}{9}\right)}\right)^n=1$ を満たす最小の自然数 n の値は エオ である。ただし、i は虚数単位である。
- (3) 2 次方程式 $x^2 2ax + 4a + 5 = 0$ の解 α と β が実数となるように実数 a の範囲を定める。 $\alpha^2 + \beta^2$ は $a = \boxed{ カキ }$ のとき最小となる。
- (5) $\lim_{x \to -\infty} \left(\sqrt{4x^2 + x} + 2x \right) = \frac{\boxed{\exists \, \forall}}{\boxed{\flat}}$ である。
- (6) 数列 $\{a_n\}$ が $a_1=1$, $a_{n+1}=a_n+n^2-n$ を満たすとき, a_n が 2025 を超える最小の自然 数 n は スセ である。
- (7) \angle AOB を直角とする直角三角形 OAB がある。辺 OA を a:b に内分する点を P,辺 OB を b:(a+b) に内分する点を Q とし,AQ と BP の交点を R とする。OA = QB のと き, \angle PRQ = $\boxed{ ソタチ }^{\circ}$ である。ただし,a,b は正の実数とする。
- (9) 5 人の身長 (cm) のデータ 161 185 163 179 167 の分散は「ナニ」である。

問題2

2 つの放物線 $C_1: y=x^2+2(k+1)x+4k+3$ と $C_2: y=x^2+2(k-1)x-4k+3$ があり、直線 ℓ が 2 つの放物線の両方に接している。ただし、k は実数とする。次の問いに答えよ。

- (1) 直線ℓの方程式を求めよ。
- (2) C_1 と C_2 および直線 ℓ により囲まれた部分の面積を求めよ。

問題3

m, n を整数とする。 $6^m = 2^n + 4$ を満たす (m, n) の組をすべて求めよ。