令和7年度 一般選抜(前期)

9時00分~10時30分

数 学

問	題	₩	子	1	~	7	頁
解	答	用	紙			1	頁

注 意 事 項

- 1. 試験開始の合図 [チャイム] があるまで、この注意をよく読むこと。
- 2. 試験開始の合図 [チャイム] があるまで、問題冊子は表紙を上に、解答用紙は裏面を上に置き、 問題冊子は開かないこと。
- 3. 試験開始の合図 [チャイム] の後に問題冊子ならびに解答用紙の全ページの所定の欄に 受験番号と氏名を記入すること。
- 4. 解答はかならず定められた解答用紙を用い、はっきり読みやすく記入すること。 また解答欄以外には何も書かないこと。
- 5. 問題冊子の余白および裏面を計算に利用してもよい。
- 6. 試験開始60分以内および試験終了前10分間は、途中退場を認めない。
- 7. 途中退場、質問、トイレ、体調不良等で用件がある場合は、挙手のうえ監督者の指示に従うこと。
- 8. 問題冊子に、落丁や乱丁があるときは、挙手のうえ交換を求めること。
- 9. 試験終了の合図 [チャイム] があったときは、ただちに筆記用具を置くこと。
- 10. 試験終了の合図 [チャイム] の後は、解答用紙は裏返しにして、通路側に置くこと。 なお、途中退場の場合は解答用紙を裏返しにして、問題冊子の上に置くこと。
- 11. 問題冊子は持ち帰ること。なお、途中退場する場合は問題冊子を持ち帰れない。
- 12. その他、監督者の指示に従うこと。

受験番号	氏	名	

- 1 a は正の実数, m, n は 2 以上の整数とする. 以下の (1), (2) に対する解答を解答用紙の所定の欄に記入せよ.
 - (1) √a の定義を述べよ.
 - (2) 正の実数 b について, $(b^m)^n=b^{mn}$ が成り立つことを用いて, $\sqrt[n]{a^m}=\left(\sqrt[n]{a}\right)^m$ を示せ.

2 3 種類の文字 a,b,c から重複を許して 10 個の文字を選び,	
aaaaaaaaa, aabbccabcc, abcbaccabc	
のように, 一列に並べたものを 単語 と呼ぶことにする.	
単語についての次の条件 (i) \sim (iv) を考える.	
(i) a を 3 個, b を 4 個, c を 3 個使って作られている	
(ii) 左端の文字は a である	
(iii) 右端の文字は b である	
(iv) 同じ文字が隣り合うことはない	
また単語から ${f c}$ をすべて取り除く操作を d で表す.たとえば,	
$d(\mathbf{aaabbbbccc}) = \mathbf{aaabbbb}, d(\mathbf{babcabcabc}) = \mathbf{bababab}$	
である. 以下の $(1)\sim(5)$ の ア にあてはまる適切な数を解答用紙の所定の欄	闌に
記入せよ.	
(1) 条件(i) を満たす単語の個数は ア 個である.	
(2) 条件(i), (ii) のすべてを満たす単語の個数は イ 個である.	
(3) 条件(i) ~ (iii) のすべてを満たす単語の個数は ウ 個である.	
(4) 条件(i)~(iv)のすべてを満たす単語に操作 d を行う.このとき $aabbbab$ となる語は u 個となる.	3単
(5) 条件 (i) \sim (iv) のすべてを満たす単語の個数を求めると $$ カ $$ 個である.	

3 $0 \le x \le 2\pi$ で定義された関数 $f(x) = 4\sin x + |2\cos 2x + 1|$ に対し、xy 平面上の曲線 y = f(x) を C とする.

(1) $t = \sin x$ とおき、f(x) を t の式で表す.このとき $f(x) = -4t^2 + 4t + 3$ となる t の範囲を求めると

である.

- (2) x が $0 \le x \le 2\pi$ の範囲を動くとき,f(x) の最大値は $\boxed{}$ で,最小値は $\boxed{}$ である.
- (3) 直線 y=3 と曲線 C の共有点の個数は \top サ 個である.
- (4) 直線 y=k と曲線 C の共有点の個数が 6 個であるような k の値の範囲は

$$\boxed{\dot{\nu}} < k < \boxed{\lambda}$$

である.

- - (1) 曲線 C_1 , C_2 の交点の座標を求めると $(r, \theta) = (4 + 2\sqrt{2}, \boxed{\upsilon})$, $(4 2\sqrt{2}, \boxed{\upsilon})$ である. ただし, $0 \le \theta < 2\pi$ とする.
 - (2) C_1 を直交座標に関する方程式で表すと

$$y = \boxed{\mathcal{P}}$$

である.

(3) C_2 を直交座標に関する方程式で表すと

$$x = \boxed{\mathcal{F}}$$

であり、y を x の式で表すと

$$y=2\sqrt{$$
 ツ または $y=-2\sqrt{$ ツ

となる.

(4) 曲線 C_1 , C_2 で囲まれた部分の面積を求めよ. なお解答用紙の所定の欄に計算の過程も記載すること.

以上