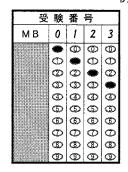
平成31年度 一般入学試験(前期)問題

数学


試験開始の合図があるまで問題冊子を開いてはならない。

注 意 事 項

- 1. 試験時間は60分である。
- 2. 試験開始の合図があるまで、筆記用具を手に持ってはならない。
- 3. 試験開始後に問題冊子の印刷不鮮明、ページの落丁等の不備、解答用紙の汚れ等を確認しなさい。これらがある場合には手を高く挙げて監督者に知らせること。
- 4. 解答番号は 1 から 55 までである。
- 5. 解答は指示された解答番号に従って解答用紙の解答欄にマークすること。
- 6. 解答用紙に正しく記入・マークしていない場合には、正しく採点されないことがある。
- 7. 指定された以外の個数をマークした場合には誤りとなる。
- 8. 下書きや計算は問題冊子の余白を利用すること。
- 9. 質問等がある場合には手を高く挙げて監督者に知らせること。
- 10. 試験終了の合図があったら直ちに筆記用具を机の上に置くこと。
- 11. 試験終了の合図の後に受験番号、氏名の記入漏れに気づいた場合には、手を高く挙げて許可を得てから記入すること。許可なく筆記用具を持つと不正行為とみなされる。
- 12. 試験終了後, 問題冊子は持ち帰ること。

解答用紙記入要領

例:受験番号が「0123」番の「日本花子」さんの場合

1. 黒鉛筆(BまたはHBに限る)を使用すること。

2. マークは、はみ出さないように ○ の内側を ● のように丁寧に塗りつぶすこと。

3. 所定の記入欄以外には何も記入しないこと。

「「「「「」」が正しくない場合には、採点されないことがある。

- 1. 受験番号の空欄に受験番号を記入し、さらにその下のマーク欄にマークする。次に、氏名を書き、フリガナをカタカナで記入する。
- 2. マークは黒鉛筆(B または HB に限る)を使い, はみ出さないように の内側を のように丁寧に塗りつぶす。
- 3. マークを消す場合は、消しゴムで跡が残らないように完全に消す。
- 4. 解答用紙は折り曲げたり、汚したりしない。
- 5. 所定の欄以外には何も記入しない。

数 学

解答上の注意

1. 問題文中の各枠には, 符号(-)または数字(0~9)が入る。

例えば、 5 6 7 と表示のある問題に対して、計算等から得られた値をマークする場合には、次の例に従う。

例: 5 6 7 に - 38 と答えたい場合には

解答 番号					解	答	欄				
5		0	(I)	2	3	4	(5)	6	7	8	9
6	9	0		\bigcirc		4	5	<u>6</u>	\bigcirc	(8)	9
7	9	0	①	2	3	4	5	6	7		9

- 2. 該当する位がない場合には、0をマークすること。例えば、 8 9 10 に 38 と答えたい場合には、 8 に 0、 9 に 3、 10 に 8をマークすること。また、同じ問題に 8 と答えたい場合には、 8 に-, 9 に 0、 10 に 8 をマークすること。
- 3. $y = \begin{bmatrix} 11 \\ x + \end{bmatrix} x + \begin{bmatrix} 12 \\ 2x + 12 \end{bmatrix}$ と表示のある問題に対して、y = x + 2 と答えたい場合には、 $\begin{bmatrix} 11 \\ 3x + \end{bmatrix}$ に $\begin{bmatrix} 12 \\ 3x + 2 \end{bmatrix}$ に $\begin{bmatrix} 12 \\$
- 4. 分数形で解答する場合には,既約分数 (それ以上約分できない分数) で答えること。また,分数の符号は分子につけ,分母につけてはいけない。例えば, $-\frac{4}{5}$ と答えたい場合には, $-\frac{4}{5}$ として答えること。
- 5. 根号を含む形で解答する場合には、根号の中に現れる自然数が最小となる形で答えること。 $4\sqrt{2}$ 、 $\frac{\sqrt{13}}{2}$ と答えるところを $2\sqrt{8}$ 、 $\frac{\sqrt{52}}{4}$ のように答えないこと。

1 次の問い(問1∼3)の各枠に当てはまる符号または数字をマークせよ。

問 1 不等式

$$1 \le \log_e n \le 12$$

を満たす自然数nの桁数pは

$$\boxed{1} \leq p \leq \boxed{2}$$

である。ただし、 $0.4342 < \log_{10} e < 0.4343$ である。

問 2 三角形 ABC において,辺 BC を 5:4 に外分する点を D,辺 CA を 3:2 に内分する点を E,線分 BE の延長と線分 AD との交点を F とする。このとき,四角形 ABCF の面積は

一名形 ADC の天体の	3	4	位でよっ
三角形 ABC の面積の一	5	6	一倍である

問 3 関数

$$f(x) = x^3 - x^2 - 2x + 1$$

の区間
$$x \le \frac{1+3\sqrt{3}}{3}$$
 における最大値は

7	+	8	9	$\sqrt{}$	10
		11	12		

2 次の文章を読み、下の問い(問1~3)の各枠に当てはまる符号または数字をマークせよ。

 $0 \le \theta < 2\pi$ として,不等式

$$4\sin^2\theta + 2\cos 2\theta\cos\theta + \cos\theta - 3 \ge 0 \tag{1}$$

を考える。

問 1 $\cos \theta = x$ とおき、 $|x| \le 1$ の範囲で式(1)の左辺をx の関数f(x) とおくと

$$f(x) = \begin{bmatrix} 13 & x^3 - \begin{bmatrix} 14 & x^2 - \begin{bmatrix} 15 & x + \end{bmatrix} \end{bmatrix}$$

であり, 因数分解すると

$$f(x) = \left(x - \boxed{17}\right)\left(\boxed{18} x + \boxed{19}\right)\left(\boxed{20} x - \boxed{21}\right)$$

問 2 不等式(1)の解は

問3 問1のf(x)について、y = f(x)のグラフとx軸で囲まれた部分の面積Sは

$$S = \begin{array}{|c|c|c|c|c|}\hline 31 & 32 \\ \hline & 33 & 34 \\ \hline \end{array}$$

3 次の文章を読み,下の問い(**問1~3**)の各枠に当てはまる符号または数字をマークせよ。

zを1でない複素数, nを2以上の整数として,

$$S_n = 1 + z + z^2 + \dots + z^{n-1} \tag{2}$$

とおく。以下ではiを虚数単位とする。

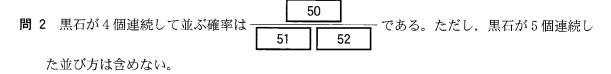
問 1
$$z = \frac{1}{2} - \frac{\sqrt{3}}{2} i$$
 のとき
$$S_8 = \frac{35}{36} + \frac{37}{39} \sqrt{38} i$$

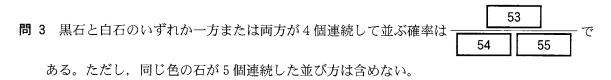
問 2 $z=\cos\theta+i\sin\theta$ (0 < θ < 2 π)とおく。式(2)の両辺の虚部どうしが等しいことから

$$\sum_{k=0}^{n-1} \sin k\theta = \frac{-\sin n\theta + \boxed{40} \sin(n-1)\theta + \boxed{41} \sin \theta}{\boxed{42} - \boxed{43} \cos \theta}$$

となる。

問 3 問 2 の結果において $\theta = \frac{\pi}{n}$ とおくと


$$\sum_{k=0}^{n-1} \sin \frac{k\pi}{n} = \frac{\boxed{44} + \boxed{45} \cos \frac{\pi}{n}}{\sin \frac{\pi}{n}}$$


となる。これより

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \sin \frac{k\pi}{n} = \frac{46}{\pi}$$

4 次の文章を読み、下の問い(問1~3)の各枠に当てはまる符号または数字をマークせよ。

5個の黒石と5個の白石がある。これを無作為に横一列に並べる。

